Available online at <u>www.pelagiaresearchlibrary.com</u>

Pelagia Research Library

Asian Journal of Plant Science and Research, 2011, 1 (2):81-87

Antifungal properties of Anthocephalus cadamba fruits

^{*}Ram Prakash Mishra¹ and Liza Siddique²

¹ R&D Division, MRD LifeSciences, Lucknow, U.P. INDIA ²Department of Biotechnology, Bundelkhand University, Jhansi. U.P. INDIA

ABSTRACT

Anthocephalus cadamba is ethnomedically widely used in the form of paste by tribe in Western Ghats for treating skin diseases. In this context, antifungal properties of Anthocephalus cadamba against a wide range of pathogens were studied. The alcoholic and aqueous extracts of fruits (ripened and un-ripened) of this plant showed significant antifungal activity against the organisms: Trichophyton rubrum, Candida albicans, Microsporum, Aspergillus niger, with zone of inhibition of the maximum 15.0 mm and 12.0 mm against Trichophyton rubrum for ethanolic and hot water extracts, respectively. The minimum MIC determined, was as low as 2.00 mg/ml and 2.5 mg/ml for ethanolic and methanolic extracts of ripened fruit of A. cadamba against Trichophyton rubrum and Aspergillus niger, respectively.

Keywords: Anthocephalus cadamba, Antifungal properties, Trichophyton rubrum, Candida albicans, Microsporum, Aspergillus niger.

INTRODUCTION

Anthocephalus cadamba (Roxb.) Miq. Syn A. chinensis (Lamk) A. Rich (Rubiaceae) is widely distributed throughout the greater part of India and is used as a folk medicine in the treatment of fever, anaemia, uterine complaints, blood diseases, skin diseases, leprosy, dysentery, and for improvement of semen quality. The leaves are recommended as a gargle in cases of stomatitis [1]. Some scientific studies have been carried out to reveal its antimalarial [2] and antihepatotoxic activities [3]. The major constituents of bark are triterpenes, tripernoid glycosides, saponins, indole alkaloids cadambine, 3 a-dihydrocadambine, cadamine, isocadamine and isodihydrocadambine [4][5][6][7]. In recent years, many possible sources of natural antibiotics are used for several infectious diseases, mostly bacterial and fungal infections. Phytochemistry of A. cadamba and its application in the treatment of various ailments like diabetes mellitus, diarrhoea, fever, inflammation, haemoptysis, cough, vomiting, wounds, ulcers, debility and antimicrobial activity

Pelagia Research Library

In this respect, the most investigated taxa are from angiosperms whereas very little data is currently available about other groups of plants, especially bryophytes [8][9][10][11].

Now as the urbanization is increasing and flat culture is establishing deep roots in society, the place for Kadam is decreasing. The young generation, unaware of its importance, is not planting it nearer to home and public parks. This is really surprising that the natives and traditional healers do not have much knowledge about medicinal properties and uses of Kadam the Chhattisgarh forest officials are also not promoting commercial plantation of Kadam. As result, its natural population is decreasing and in near future, one can see it only in old pictures.

The traditional healers of Chhattisgarh use the Kadam bark in treatment of hoarseness of throat. After mixing the bark in cold water, honey and cumin (*Zeera*), it is given to the patients internally. It is considered as one of the promising remedies. The natives of Chhattisgarh dip the bark in water used for bath. According to them this herbal bath makes the skin soft and free from all infections. The traditional healers of Bastar region use Kadam bark in treatment of eye diseases. It is also used in case of stomatitis. The traditional healers of Chhattisgarh Plains prefer the decoction of leaves in place of bark for same purpose. The fruit juice is given to children to treat gastric irritability. A decoction of the leaves is good for ulcers and wounds. The fruits are edible. The timber is used for making pulp and paper, boxes, crates and furniture. The wood is also used as fuel.

MATERIALS AND METHODS

Sample Collection and Identification of the Plant:

The ripened, un-ripened fruits of actively growing *A. cadamba* from roadside tree were collected at Vibhuti Khand near MRD LifeSciences, Gomti Nagar, Lucknow. Fruits were thoroughly washed under running tap water, rinsed with distilled water and finally air dried and preserved - 20° C till use.

Extraction of bioactive compounds:

For extraction of bioactive compounds, 5.0 gm of powdered plant material was in 50ml of methanol (v/v; 80%); ethanol (v/v; 70%) and ethyl acetate (absolute) and kept in dark for a week, filtered it by Whattman filter paper No.1, filtrate is air dried and solid crystals of the plants extracts was recovered. For hot water extract, plant material was mixed with distilled water (1:10) and kept in boiling water for 2 hrs., followed by filtration by Whattman filter paper No.1 and concentration before use.

Test Organisms:

Clinical isolates of bacteria and fungi were used for bioassay studies. The test organism includes *Trichophyton rubrum, Candida albicans, Microsporum, Aspergillus niger*. The isolates were maintained on freshly prepared PDA plates and slants, and keep in a refrigerator at 4[°] C until required for use. Single colony was transferred in sterile 50 ml of potato dextrose broth and incubated at 27 °C in shaker incubator at 140 rpm for 14 hrs. Fungal cells were recovered by centrifugation and were suspended in sterile distilled water; concentration of bacterial cells was optimized to OD 0.1 at 600 nm before use.

Screening of bioactive compounds against various pathogens:

10.0 ml Potato dextrose agar was poured in a sterile Petri dish, 100 μ l of test organisms were spread on the surface of media, wells were prepared with help of sterile borer and wells were aseptically filled by 30 μ l plant extracts. Plates were incubated aerobically at 27 0 C for 14 hrs. The diameters of zones of inhibition were measured.

Determination of Minimum Inhibitory Concentration (MIC) of extracts:

This is carried out by double agar gradient plate method. PDA (5.0 ml) was poured into sterilized Petri dishes, leaving the plate in slanted position. After setting the media, another 5.0 ml of PDA (along with plant extract; 4.0 mg/ml) was added to the plates to make the level unity; thus the plate contained an increasing concentration of plant extract along the diameter of the plate. Now the prepared inoculums cultures were spread. Incubate the plate in upright position at 27 $^{\circ}$ C for 14 hrs. Concentration gradient along with the diameter was calculated for each mm. visible colonies were observed, distance was measured from top end and concentration of the compound was calculated as MIC.

RESULTS

Screening of the methanolic extracts of plant metabolites against various pathogens was performed and data shown below (Fig. 1).

 $\mathbf{Fig. 1:} \ \mathbf{Zone of inhibition of methanolic extracts of A. \ cadamba \ fruits \ against \ various \ fungal \ pathogens.$

Screening of the ethanolic extracts of plant metabolites against various pathogens was performed and data shown below (Fig. 2).

Fig. 2: Zone of inhibition of ethanolic extracts of A. cadamba fruits against various fungal pathogens.

Screening of the hot water extracts of plant metabolites against various pathogens was performed and data shown below (Fig. 3).

Fig. 3: Zone of inhibition of hot water extracts of A. cadamba fruits against various fungal pathogens.

MIC determined by double agar plate method showed a very good response against pathogens. MIC of the methanolic extracts of plant metabolites against various pathogens was calculated and data shown below (Fig. 4).

MIC of the ethanolic extracts of plant metabolites against various pathogens was calculated and data shown below (Fig. 5).

Fig. 5: MIC of ethanolic extracts of A cadamba fruits against various batterial pathogens.

MIC of the hot water extracts of plant metabolites against various pathogens was calculated and data shown below (Fig. 6).

Fig. 6: MIC of hot water extracts of A. cadamba fruits against various bacterial pathogens.

DISCUSSION

The disc diffusion method was used to determine the inhibition zones of *A. cadamba* extracts (organic and aqueous). The plant fruits showed limited antifungal activity against the organisms (Fig. 1-3) and especially good result against *Trichophyton rubrum* (Fig.2). The ethanolic extract and hot water of ripened fruit was best among all the extracts prepared and tested in the study. Among the test pathogens selected in the study, *Trichophyton rubrum* was found to be most sensitive, followed by *Microspora* and *Candida albicans*, respectively. Some of the extracts like ethanolic extracts of ripened fruits of *A. cadamba* gave very low MIC value and inhibited the growth of *Trichophyton rubrum* and *Microspora* with MIC as low as 2.00 mg/ml. Ethyl acetate extracts of ripened and un-ripened fruits of *A. cadamba* showed zero or no activity against any of the fungal pathogens.

REFERENCES

[1] I. V. Slkar, K. K. Kakkar, O. J. Chakre, *Glossary of Indian Medicinal Plants with Active Principles*. CSIR, New Delhi. Part I.**1992**. pp75.

[2] S. Sianne, R. Fanie, van H. Nat. Prod. Rep. 2002, 19, 675.

[3] A. Kapil, I. Koul, O. P. Suri, *Phytother. Res.* 1995, 9(3), 189.

[4] P. Niranjan, K. K. Sahua, J. Zhonghua, S. N. Banerjee, B. Mandal, N. Tamotsu, J. Chem. Res. 2000, 1(1), 22.

[5] I. Kitagawa, H. Wei, S. Nagao, T. Mahmud, K. Hori, M. Kobayashi, T. Uji, H. Shibuya, *Chem. Pharm. Bull. (Tokyo)* **1996**, 44(6), 1162.

[6] S. B. Mahato, S. Garai, *Progress in the Chemistry of Organic Natural Products*, Springer Wien, New York. **1998**, 74, 1.

- [7] R. T. Brown, C. L. Chapple, *Tetrahedron Letters*, **1976**, 19, 1629.
- [8] G. C. Madsen, A. L. Pates, *Botanical Gazette*, **1952**,113, 293.
- [9] J. A. McCleary, P. S. Sypherd, D. L. Walkington, Science, 1960, 131, 108.
- [10] R. D. Banerjee, S. P. Sen, The Bryologist, 1978, 82, 141.
- [11] A. Basile, S. Giordano, J. A. Lopez-Saez, C. Cobianch, Phytochem, 1999, 52, 1479.